6 minutes
[BZOJ1189][HNOI2007]紧急疏散evacuate(二分答案 + 最大流)
做了好几题裸的最大流,来一道稍微不裸一点的(不过这种经典题也没什么好说的),首先题目二分答案,然后用最大流验证是否满流。首先要做一次BFS预处理,预处理出所有的空点到所有门的最短路。做最大流时,首先将源点向所有空位置连一条容量为1的边,将所有的门向汇点连一条容量为时间的边(一开始连了N * M的容量,坑了好久。。),再将所有空点向时间内能到达的门连一条容量为1的边。
//HNOI2007 evacuate.cpp
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
//#define LOCAL
//#define VISUAL_STUDIO
#define READ_FREAD
//#define READ_FILE
const int MAXN = 25;
const int MAXPT = 410;
#ifdef LOCAL
#define LOCAL_TIME
#define LOCAL_DEBUG
//#define STD_DEBUG
#endif
#ifdef VISUAL_STUDIO
#pragma warning(disable: 4996)
#endif
#ifdef LOCAL_TIME
#include<ctime>
#endif
#ifdef READ_FREAD
char fread_char;
inline void fread_init()
{
fread_char = getchar();
}
inline int get_int()
{
int ret = 0;
while ((fread_char < '0') || (fread_char > '9'))
{
fread_char = getchar();
}
while ((fread_char >= '0') && (fread_char <= '9'))
{
ret = ret * 10 + fread_char - '0';
fread_char = getchar();
}
return ret;
}
inline char get_char()
{
char ret;
while ((fread_char == ' ') || (fread_char == 'n'))
{
fread_char = getchar();
}
ret = fread_char;
fread_char = getchar();
return ret;
}
#endif
inline void read(int &a)
{
#ifdef READ_FREAD
a = get_int();
#else
scanf("%d", &a);
#endif
}
inline void read(char &a)
{
#ifdef READ_FREAD
a = get_char();
#else
scanf("%c", &a);
#endif
}
int n, m;
char map[MAXN][MAXN];
int d[MAXPT][MAXPT];
bool graph_in[MAXPT], graph_out[MAXPT];
int l, r, mid, tot_p;
int s, t;
inline int get_node(const int i, const int j)
{
return (i - 1) * m + j;
}
struct queue_node
{
int id, height;
inline queue_node(const int id_ = 0, const int height_ = 0)
{
id = id_;
height = height_;
}
inline bool operator < (const queue_node &b) const
{
return height < b.height;
}
};
int flow_graph[MAXPT][MAXPT];
int height[MAXPT], inflow[MAXPT], gap[MAXPT];
bool visit[MAXPT], in_q[MAXPT];
std::queue <int> bfs_q;
std::priority_queue <queue_node> Q;
inline void bfs()
{
gap[0] = 1;
bfs_q.push(t);
visit[t] = true;
int tmp;
while (!bfs_q.empty())
{
tmp = bfs_q.front();
bfs_q.pop();
for (int i = s; i <= t; i++)
{
if ((!visit[i]) && (flow_graph[i][tmp] > 0))
{
gap[height[i] = height[tmp] + 1]++;
visit[i] = true;
bfs_q.push(i);
}
}
}
}
inline void max_flow_init(const int time)
{
memset(flow_graph, 0, sizeof(flow_graph));
memset(height, 0, sizeof(height));
memset(inflow, 0, sizeof(inflow));
memset(gap, 0, sizeof(gap));
memset(visit, false, sizeof(visit));
memset(in_q, false, sizeof(in_q));
in_q[s] = in_q[t] = true;
for (int i = s + 1; i < t; i++)
{
flow_graph[s][i] = graph_in[i];
flow_graph[i][t] = graph_out[i] * time;
}
for (int i = s + 1; i < t; i++)
{
for (int j = s + 1; j < t; j++)
{
if (graph_out[j])
{
flow_graph[i][j] = (d[i][j] <= time) && (d[i][j] > 0) ? 1 : 0;
}
}
}
bfs();
}
inline int max_flow(const int time)
{
max_flow_init(time);
for (int i = s + 1; i < t; i++)
{
if (flow_graph[s][i] > 0)
{
flow_graph[i][s] = inflow[i] = flow_graph[s][i];
flow_graph[s][i] = 0;
in_q[i] = true;
Q.push(queue_node(i, height[i]));
}
}
queue_node tmp;
int push_flow, min_height;
while (!Q.empty())
{
tmp = Q.top();
Q.pop();
in_q[tmp.id] = false;
for (int i = s + 1; (i <= t) && (inflow[tmp.id] > 0); i++)
{
if ((flow_graph[tmp.id][i] > 0) && (height[tmp.id] == height[i] + 1))
{
push_flow = std::min(inflow[tmp.id], flow_graph[tmp.id][i]);
inflow[i] += push_flow;
inflow[tmp.id] -= push_flow;
flow_graph[tmp.id][i] -= push_flow;
flow_graph[i][tmp.id] += push_flow;
if (!in_q[i])
{
in_q[i] = true;
Q.push(queue_node(i, height[i]));
}
}
}
if ((inflow[tmp.id] > 0) && (tmp.id < t))
{
min_height = -1;
for (int i = s + 1; i < t; i++)
{
if (flow_graph[tmp.id][i] > 0)
{
if ((min_height == -1) || (min_height > height[i]))
{
min_height = height[i];
}
}
}
if ((min_height > -1) && (min_height < t))
{
gap[height[tmp.id]]--;
if (gap[height[tmp.id]] == 0)
{
for (int i = s + 1; i < t; i++)
{
if ((height[i] >= height[tmp.id]) && (height[i] < t))
{
gap[height[i]]--;
height[i] = t;
if (in_q[i])
{
Q.pop();
}
}
}
}
else
{
gap[height[tmp.id] = min_height + 1]++;
Q.push(queue_node(tmp.id, height[tmp.id]));
}
in_q[tmp.id] = true;
}
}
}
return inflow[t];
}
struct map_node
{
int x, y;
inline map_node(const int x_ = 0, const int y_ = 0)
{
x = x_;
y = y_;
}
};
std::queue <map_node> map_q;
inline void do_bfs(const int x, const int y)
{
map_node tmp;
while (!map_q.empty())
{
tmp = map_q.front();
map_q.pop();
if ((map[tmp.x - 1][tmp.y] == '.') && (d[get_node(tmp.x - 1, tmp.y)][get_node(x, y)] == 0))
{
d[get_node(tmp.x - 1, tmp.y)][get_node(x, y)] = d[get_node(tmp.x, tmp.y)][get_node(x, y)] + 1;
map_q.push(map_node(tmp.x - 1, tmp.y));
}
if ((map[tmp.x + 1][tmp.y] == '.') && (d[get_node(tmp.x + 1, tmp.y)][get_node(x, y)] == 0))
{
d[get_node(tmp.x + 1, tmp.y)][get_node(x, y)] = d[get_node(tmp.x, tmp.y)][get_node(x, y)] + 1;
map_q.push(map_node(tmp.x + 1, tmp.y));
}
if ((map[tmp.x][tmp.y - 1] == '.') && (d[get_node(tmp.x, tmp.y - 1)][get_node(x, y)] == 0))
{
d[get_node(tmp.x, tmp.y - 1)][get_node(x, y)] = d[get_node(tmp.x, tmp.y)][get_node(x, y)] + 1;
map_q.push(map_node(tmp.x, tmp.y - 1));
}
if ((map[tmp.x][tmp.y + 1] == '.') && (d[get_node(tmp.x, tmp.y + 1)][get_node(x, y)] == 0))
{
d[get_node(tmp.x, tmp.y + 1)][get_node(x, y)] = d[get_node(tmp.x, tmp.y)][get_node(x, y)] + 1;
map_q.push(map_node(tmp.x, tmp.y + 1));
}
}
}
inline void prepare_bfs(const int x, const int y)
{
if (map[x][y] != 'D')
{
return;
}
if (x == 1)
{
if (map[x + 1][y] == '.')
{
map_q.push(map_node(x + 1, y));
d[get_node(x + 1, y)][get_node(x, y)] = 1;
do_bfs(x, y);
}
}
else if (x == n)
{
if (map[x - 1][y] == '.')
{
map_q.push(map_node(x - 1, y));
d[get_node(x - 1, y)][get_node(x, y)] = 1;
do_bfs(x, y);
}
}
else if (y == 1)
{
if (map[x][y + 1] == '.')
{
map_q.push(map_node(x, y + 1));
d[get_node(x, y + 1)][get_node(x, y)] = 1;
do_bfs(x, y);
}
}
else if (y == m)
{
if (map[x][y - 1] == '.')
{
map_q.push(map_node(x, y - 1));
d[get_node(x, y - 1)][get_node(x, y)] = 1;
do_bfs(x, y);
}
}
#ifdef LOCAL_DEBUG
for (int i = 2; i < n; i++)
{
for (int j = 2; j < m; j++)
{
printf("%d ", d[get_node(i, j)][11]);
}
printf("n");
}
#endif
}
inline void bfs_init()
{
for (int i = 2; i < n; i++)
{
prepare_bfs(i, 1);
prepare_bfs(i, m);
}
for (int i = 2; i < m; i++)
{
prepare_bfs(1, i);
prepare_bfs(n, i);
}
}
int main()
{
#ifdef LOCAL_TIME
long long start_time_ = clock();
#endif
#ifdef READ_FILE
freopen("evacuate.in", "r", stdin);
#ifndef STD_DEBUG
freopen("evacuate.out", "w", stdout);
#endif
#endif
#ifdef READ_FREAD
fread_init();
#endif
read(n);
read(m);
s = 0;
t = n * m + 1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
read(map[i][j]);
if (map[i][j] == '.')
{
tot_p++;
graph_in[get_node(i, j)] = true;
}
else if (map[i][j] == 'D')
{
graph_out[get_node(i, j)] = true;
}
}
}
bfs_init();
l = 1, r = n * m;
while (l < r)
{
mid = (l + r) >> 1;
#ifdef LOCAL_DEBUG
int ret = max_flow(mid);
printf("MAX_FLOW: %d %d %dn", mid, ret, tot_p);
if (ret >= tot_p)
#else
if (max_flow(mid) >= tot_p)
#endif
{
r = mid;
}
else
{
l = mid + 1;
}
}
if (l >= n * m)
{
printf("impossible");
}
else
{
printf("%d", l);
}
#ifdef LOCAL_TIME
printf("nrun time: %lld msn", (clock() - start_time_) / 1000);
#endif
#ifdef READ_FILE
fclose(stdin);
#ifndef STD_DEBUG
fclose(stdout);
#endif
#endif
return 0;
}
Read other posts